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is compared with En(x), En-(x), and En(x) + en*(x). Even at x2 = 1 the im- 
proved approximation has only about one per cent error compared to forty per cent 
for En(x). 

ACCURACY OF ASYMPTOTIC APPROXIMATIONS 

X2 - i erf (x) En (x) + en *(x) En(X) En_l(X) 

1.00 1.461 1.449 2.039 1.359 
1.25 1.826 1.816 2.185 1.561 
1.50 2.250 2.280 3.049 1.830 
1.75 2.748 2.750 3.329 2.440 
2.00 3.343 3.339 3.755 2.796 
2.50 4.935 4.951 5.548 3.865 
3.00 7.313 7.310 7.650 6.042 
3.50 10.917 10.926 11.430 8.761 
4.00 16.450 16.451 16.745 13.419 
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In this paper we shall give a one-step method for the numerical solution of sec- 
ond order linear ordinary differential equations based on Hermitian interpolation 
and the Lobatto four-point quadrature formula. One-step methods based on quadra- 
ture were introduced into the literature by Hammer and Hollingsworth [3]; for sub- 
sequent work see Morrison and Stoller [7], and Henrici [5]. 

Throughout our discussion we shall assume that the functions N(x), f(x), g (x) 
of the differential equation y" = N(x)y' + f(x)y + g(x) are sufficiently differ- 
entiable to ensure that the derivations we give are valid in any context in which 
they are used. 

In order to simplify somewhat the discussion of the method under consideration 
we shall first treat the differential equation y" = f(x)y + g(x), y(xo) = yo , y'(xo) = 
yo'. The necessary modifications for the general second order differential equation 
y" = N(x)y' + f(x)y + g(x) will be given later. 

After integrating the above differential equation from x0 to xi = xo + h (h > 0), 
we obtain the system of integral equations: 

xo+h 

(1) y'(xo + h) = y'(xo) + jxo?h r) + g(7)] dr, 
o 
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xo+h 

(2) y(xo + h) = y(xo) + hy'(xo) + f [f(r)y(r) + g(r)](xo + h - r) dr. 
xo 

We shall approximate the above integrals by the Lobatto four-point quadrature 
formulae on the interval [xo, xo + h], cf. [6], 

(3) J F(X) dx = - Wk F(rk) + R4. 
0O 2 k=l 

Here W1 = W4 =, W2 = W3 = 5 

Tl = Xo, T2 = XO+ (5- /5)h/10, T3 = Xo + (5 + 5)h/10, 

_ 4h7FvI(t) 
T4 = xo + h, R4 = -4h7F.1575 

3.115750 

where xo < t < xo + h. 
In order to shorten the succeeding calculations we denote (5 - /5)/10 by r, 

(5 + V/5)/10 by s. 
We have, approxiimating the integrals of (1) and (2) by the above quadrature 

formula, 

(4) y'(xo + h) = y'(xo) + - E Wk[f(rk)Y(rk) + g(rk)] + To, 2 k=i 

y(xo + h) = y(xo) + hy'(xo) 

(5)h4 
+ - E Wk(xO + h - rk)[f(rk)Y(rk) + g(rk)] + TPo. 2 k=l 

(To and To will be discussed in detail later.) 
We must know Y(T2), y( 3) in order to apply the above formulae as a numerical 

method. We do this as follows. In addition to y(xo), y'(xo), y"'(xo), we suppose we 
know y(xo + h), y'(xo + h), y"'(xo + h); we fit this data to a Hermite interpolating 
polynomial, cf. [6]: 

y(xo + th) Y(xo)[1 - t3 + 3t3(t -1) -6t3(t - 1)2] 

? y'(xo)[t -t3 + 2t3(t -1) - 3t3(t - )2]h 

+- y"(xo) [t 2t3 + t4 -t3(t - )2]h2/2 

(6) + y(xl)[t3 -3t3(t -1) + 6t3(t - 1)2] 

? y'(x1) [t3(t -1) -3t3(t -1)2]h 

? y"(x)[t3(t- 1)2]h2/2 + yVI( Q) t3(t - 1)3h6/7201 

where xo <K <xo + h, 0 < t < 1. 
Using the differential equation and the abbreviated form for y(xo + th), 

y(xo + th) = A(t)y(xo) + B(t)y'(xo)h + C(t)y"(xo)h2/2 

7-+ D(t)y(x1) + E(t)y'(xl)h + F(t)y'(xl)h2/2 + II(t), 
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we obtain 

y(xo + th) = y(xo)[A(t) + f(xo)C(t)h2/2] 

(8) + y'(xo)B(t)h + y(xi)[D(t) + F(t)f(xi)h2/2] 

+ y'(xi)E(t)h + [g(xo)C(t) + g(xi)F(t)]h2/2 + H(t). 
Letting 

ac(t, h) = A (t) + f(xo)C(t)h2/2, 

,y(t, h) = D(t) + F(t)f(xi)h2/2, 

and A(r) = Ar , B(r) = Br, etc., f(xo) = fo , f(xo + rh) = fr , etc., we have, 
substituting Eq. (8) into Eqs. (4) and (5) for the values of y(T2), y( r3), two linear 
equations to be solved for y(xo + h), y'(xo + h). They reduce to 

/y(xo ? h)\ - - y(xo) 

(9) '(xo + h)) = Ao B ( ) +AoGo+AoTo* 

where Ao = C/det (C), in which 

[ 5h2 5h3 ( ) 12 (fr r + fs 8) 12 (sfr Er + rf8 E8) 
(10 ) 0= h2 

Lh [fr 'r +fs Y8] +hf2 1 - 12 (8fr 'Yr + rfs Y8) 

It is easily seen that det (C) F 0 if h is sufficiently small. Bo denotes the matrix 

h2 5h2 h?-(fBrr3B) 
|1+ 12 fo + 12(fr a r + rfs at8 h + 52(sfr Br + rfs Bs,) 12 12 frr?fss)12 

h + 5h (frar + f ) 1 + ? 2 (fr Br + fs Bs) 
12 12 ~~~~~~~12 

Go denotes the column vector 

h g? + 15 [Sgr + rg8] ? - [gO(SCrfr + rC, fs ) + gi(sFrfr + rF8f,))] 
(12) Go = 5h53 

( [go + gi] + 
5 

[gr+ + 8]+ +h [g0( Crfr + Csfs) + gi(Frfr + Fsfs)] 

In order to obtain an upper bound for the truncation error vector we consider 
the quantities H(t), To, TPo. 

By the definition of H(t) given above, 

H(r) = -h6r3S3yVI (r)/720 = - h6 y8 (tr)/901000. 

H(s) = -h6 yU( 8)/90,000 where (r and (, are in the open interval (xo, xo + h). 
To and To are given by the following formulae: 

(13) To = -[f(x)y(x) + g(x)]lv h7/(96*15750), 

(14) To = -[(xo + h - r) (f(x)y(x) + g(x) )]v h7/(96-15750), 

where 43 and t4 are in the open interval (xo, xo + h). 
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Thus we obtain for To* the following: 

[ 
5h 

[SfrH M + rf8 HI] + To 
(15) To* 12 

- [fr Hr + fs H] + To 

Thus the approximate solution at x1 given by 

(16) (Y,) = Ao Bo (Yo) + Ao Go 

has local truncation error 0(h7). 

We shall consider three computational examples. We have written programs for 
the CDC 1604 computer, FORTRAN (single-precision), for the following methods: 
Runge-Kutta, Numerov [4] and Gautschi (Stromer interpolation of trigonometric 
order two) [2]. We have used the same estimate of the period T = 7r/5 as Gautschi's 
article [2]. 

Example 1. A Mathieu differential equation y' + 100(1 - .1 cos (2x))y = 0, 
with the initial conditions taken as x = 0, y(O) = 1, y' (0) = 0. After starting 
Numerov's and Gautschi's methods by the Runge-Kutta method we obtain the 
values shown in Table 1. 

Example 2. Bessel differential equation y' + (100 + jx2)y = 0. We take the 
initial conditions at x = 1, such that the solution is +/\x Jo(10x). We have h as 
0.02 again. We have taken the initial values from [1] to 10D. For Numerov's and 
Gautschi's method we have taken the other starting values from the table also 
(Table 2). 

Example 3. Our last example is the differential equation y' = (1 + x2)y. The 
initial conditions in this example were chosen at x = 0 so that the solution is 

x2 /2 e . We again take h = 0.02 and obtain the results of Table 3, after taking all the 
necessary starting values as exact. 

The general second order equation y' = N(x)y' + f(x)y + g(x) can be treated 
by the above techniques, if one treats the N(x)y' term by integration by parts. One 
may also use a well-known transformation [6] to eliminate the y' term from the 
above differential equation. The procedure one should use depends primarily on 
whether or not N(x) is explicitly integrable. 

It is well known that two-point boundary value problems of the form y' = 
f(x)y + g(x), y(a) = A, y(b) = B,-oo < a <b< b oo,f(x) > O can be solved 
by initial value techniques either by the method of superposition or by the nu- 
merical construction of the Green's function of the above differential equation. We 
have made calculations on problems of the above type with the one-step method 
under consideration and have found the results to be quite satisfactory. 

I am especially indebted to Professor P. C. Hammer for many discussions on the 
numerical solution of differential equations, and to the Wisconsin Alumni Research 
Foundationi and the National Science Foundation who, through the Graduate Re- 
search Committee, made available to me the computing facilities of the Numerical 
Analysis Laboratory of the University of Wisconsin. 

Numerical Analysis Laboratory 
University of Wisconsin 
Madison, Wisconsin 



668 J. T. DAY 

TABLE 1 
Mathieu Differential Equation 

X Lobatto Runge-Kutta Numerov Gautschi Exact (7D) 

.5 .069208517 .069156017 .069220716 .0692114316 .0692085 
1.0 - .908417862 - .908438043 - .908410736 - .908415864 - .9084179 
1.5 - .693960833 - .693810059 - .693995071 - .693958722 - .6939608 
2.0 .230958975 .230894461 .230964653 .230964653 .2309590 
2.5 .976369849 .976344156 .976362821 .976369948 .9763699 
3.0 .205766632 .205359297 .205865854 .205761493 .2057667 
3.5 - .961679414 - .961718360 - .961651417 - .961679510 - .9616794 
4.0 .426531682 - .426046799 - .426645356 - .426531047 - .4265317 
4.5 .602236752 .602611939 .602128771 .602238461 .6022367 
5.0 .941737244 .941526628 .941766210 .941734467 .9417373 

TABLE 2 

Bessel Differential Equation 

X Lobatto Runge-Kutta Numerov Gautschi Exact (7D) 

2 .236208546 .236214981 .236205562 .236208655 .2362085 
3 - .149593736 - .149640613 - .149580121 - .149594204 - .1495937 
4 .014733783 .014832263 .014708498 .014734630 .0147338 
5 .124800157 .124673672 .124829485 .124799188 .1248002 
6 - .224059244 - .223958092 - .224078623 - .224058612 - .2240592 
7 .251104887 .251090902 .251099928 .251105055 .2511049 
8 - .197260634 - .197374820 - .197223810 .079892131 - .1972606 
9 .079890053 .080127641 .079826058 .079892131 .0798900 

10 .063200835 .062899111 .063274262 .063198428 .0632007 

TABLE 3 
Differential Equation y" = (1 + x2)y 

X Lobatto Runge-Kutta Numerov Exact (10D) Machine 

1.0 1.648721269 1.648721264 1.648721287 1.648721271 
2.0 7.389056087 7.389055819 7.389056409 7.389056099 
3.0 90.01713107 90.01710938 90.01714644 90.01713130 
4.0 2980.957976 2980.954707 2980.959682 2980.957987 
5.0 268337.2853 268336.2736 268337.7249 268337.2864 

1. BRITISH ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, Mathematical Tables, Vol. VIJ 
Bessel Functions, Cambridge University Press, Cambridge, 1958. 

2. W. GAUTSCHI, "Numerical integration of ordinary differential equations based on trig- 
onometric polynomials," Numer. Math., v. 3,1961, p. 381-397. 

3. P. C. HAMMER & J. W. HOLLINGSWORTH, "Trapezoidal methods of approximating solu- 
tions of differential equations," MTAC, v. 9, 1955, p. 92-96. 

4. R. W. HAMMING, Numerical Methods for Scientists and Engineers, McGraw-Hill, New 
York, 1962. 

5. P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations, Wiley, New 
York, 1962. 

6. F. B. HILDEBRAND, Introduction to Numerical Analysis, McGraw-Hill, New York, 1956. 
7. D. MORRISON & L. STOLLER, "A Method for the numerical integration of ordinary dif- 

ferential equations," MTAC, v. 12, 1958, p. 269-272. 


	Cit r85_c86: 


